
David Lambert

July 20, 2012

Assignment 6 - CNT4603, Langley

“Knock Before Entering: Securing SSHD”

The goal of this week’s project was to add some security to SecureSHell Server (SSHD).

Since SSH is essentially a doorway into a system, one would want to protect is as if it were a

door to their house. Of course, one of the best ways to secure a door is to lock it. On a

hypothetically secure system, the only keyhole is on the inside of the door, but sometimes

people still need to get in from the outside. One way to allow that access would be with a secret

knock that only the user and the system know. Only after the user has knocked in the right way

would the door be allowed to open. This scheme is roughly what was instituted in this week’s

assignment: a daemon program was installed on the server machine which listens for a

sequence of “knocks”, or pings, on pre-specified ports so that when the right sequence is

executed, it allows SSH access through a different, pre-specified, non-default port.

According to the assignment’s webpage, I was to set up both the Debian machine and

the CentOS virtual machine to require a secret “knock” before allowing SSH access to each of

them. To get started, I decided to focus on setting up the CentOS machine as the SSH/knockd

server first, and then it would hypothetically be easy to replicate the setup on the Debian

machine by simply copying the configuration files over.

After verifying that sshd was installed on the CentOS machine, the first step was to

change its listening port by modifying the appropriate line in /etc/ssh/sshd_config to reflect my

chosen port of 28910.

The next step was to configure the firewall. I had worked with iptables before, and also

in past assignment in this class, so this part wasn’t too difficult. I started with a clean slate by

flushing the iptables rules and then used iptables-save and iptables-restore to write a new rule

1

table from scratch. The assignment webpage instructed to restrict all ports except 80 (HTTP)

and 443 (HTTPS).

After a fruitless attempt at executing yum install knockd, I discovered knockd was not in

my default repositories on my CentOS machine. Fortunately, some diligent searching of Google

yielded pleasant results: the appropriate RPM package was found at [http://pkgs.org]. After

adding the associated repository, yum happily found the correct knockd package to install when

I gave it the order this time.

A swift installation later, and it was time for configuration of knockd. With the webpage

[http://www.zeroflux.org/projects/knock] for the creator of knockd conveniently hosting

configuration instructions, I dove right into editing the knockd.conf file. The configuration was

short and sweet - everything seemed pretty straightforward. I set the knock sequence to

4000,10000,5000,20000 and gave the instructions for iptables to allow unfiltered port 28910

traffic for twenty seconds if that knock sequence was received from any machine.

Now time for some testing. I wrote a short bash script, testknock.sh, on the Debian

machine to execute the knock command with the appropriate knock sequence and then run

nmap to test if the correct port opened and closed at the proper times. The script ran flawlessly,

but the “knocks” were not getting to the CentOS machine for some reason. My first thought

was “firewall issue” but some time with Wireshark told me that the packets were not getting

blocked. Attempts at pinging the CentOS machine also went ordinarily. After much frustration,

closer examination of the Wireshark live data capture and the knockd.conf file finally concluded

that knockd was listening for packets only containing the “ACK” TCP flag - a misconfiguration by

myself, set by the “tcpflags” parameter in the knockd.conf file. All it took was this simple

correction, and now the “knocking” process works as it’s supposed to!

Thoroughness matters, so before checking the CentOS machine off the to-do list, I

wanted to make sure I could actually connect to the SSH server. After trying to ssh to the

2

CentOS machine, a “cannot connect” error reinforced my premonition. A natural intuition to

assume “firewall issue” persuaded me to consult “iptables -S”. After some consideration, it was

obvious the error was that knockd was inserting the “open port 28910” rule after the rule to

reject all other unspecified ports. It might has well have been talking to brick wall - or,

a “firewall” (sorry, I couldn’t resist). A quick Google search showed me how to tell knockd to

add the rule to the top of the list instead of the bottom (“-I INPUT 1...” instead of “-A INPUT...”,

for insert instead of append).

A successful test followed by several more for redundancy confirmed that all my hard

work and frustration had paid off. That should be the end of the learning curve for this project.

The last polishing touch before tackling the Debian side was to make sure knockd was

configured to run at startup via chkconfig - a nuance I had learned about Red Hat-derived

distributions versus Debian-derived ones.

The Debian setup of knockd certainly went much quicker. I started out by installing

openssh-server and knockd via apt-get. Fortunately they were already in the Debian repos. I

then simply copied the iptables and knockd.conf files from the CentOS machine over to the

Debian machine and made any adjustments to them as necessary.

Thinking about the requirement of the assignment for the setup to work after both

machines are restarted, I questioned how iptables would know to be loaded during the startup

process on the Debian machine (I had already dealt with iptables on the CentOS machine in the

past and recalled that this did not necessarily happen automatically). Sure enough, a Google

search confirmed that I had to create a script file to load the rule tables in /etc/network/if-pre-

up.d/.

Time to do some testing! An attempt to SSH to the Debian machine resulted in

a “connection refused” error. nmap showed that port 28910 was “unfiltered” when it was

supposed to be, so it was probably not a firewall problem. A few minutes of thought reminded

3

me that I forgot to set the port that SSHD listens to on the Debian machine. An edit of /etc/ssh/

sshd_config promptly fixed this.

To wrap things up, I restarted both machines and ran my testknock.sh script file to

confirm that everything worked as it was supposed to. Mission accomplished!

This was definitely an interesting and fruitful assignment. I had used SSH to connect to

machines (even to my own personal machine) many times in the past and never really thought

that “Secure” Shell had opportunities to be unsecure. It goes to prove that no matter how

secure a system is ever developed, there will always be a way to compromise it - all in the

game of hacker cat and mouse.

4

